博客
关于我
Hive 简介
阅读量:187 次
发布时间:2019-02-28

本文共 675 字,大约阅读时间需要 2 分钟。

一 学习前提

在深入学习Hive之前,作为一名开发者或数据处理人员,首先需要具备扎实的数据处理基础。Hive是一个基于Hadoop的分布式数据处理框架,核心思想是将数据存储在分布式文件系统中,通过分治法进行处理。理解Hive的工作原理,需要掌握Hadoop的基本概念,尤其是HDFS和Yarn的运行机制。

二 什么是Hive

Hive是一款开源的分布式数据处理框级工具,主要用于对结构化数据进行查询和转换。它的核心特点是支持通过SQL-like语句对海量数据进行操作,简化了大数据处理的复杂性。Hive的数据存储方式是将数据存储在Hadoop的分布式文件系统中,支持动态分割和扩展,能够处理PB级的数据规模。

三 为何使用Hive

  • 灵活性:Hive支持多种数据源和存储方式,能够兼容多种数据格式,包括文本、JSON、CSV等。
  • 扩展性:通过Hadoop的分布式架构,Hive可以轻松扩展处理能力,支持PB级的数据量。
  • 高效性:利用Hadoop的并行处理能力,Hive能够在短时间内完成大规模数据的读写和转换操作。
  • 可编程性:Hive提供丰富的内置函数和API,支持通过编程方式对数据进行复杂的处理。
  • 成本效益:Hive的资源利用率高,能够显著降低大数据处理的成本。
  • 四 相关Hive资源

    对于进一步学习Hive,可以参考以下资源:

    • Hive官方文档:提供了Hive的详细文档和使用手册。
    • Hive社区:参与Hive开发和交流的最佳平台。
    • 在线教程:提供多种Hive学习课程,适合不同层次的学习者。

    五 参考

    以上内容仅供参考,具体操作以实际情况为准。

    转载地址:http://dbej.baihongyu.com/

    你可能感兴趣的文章
    Nim游戏
    查看>>
    NIO ByteBuffer实现原理
    查看>>
    Nio ByteBuffer组件读写指针切换原理与常用方法
    查看>>
    NIO Selector实现原理
    查看>>
    nio 中channel和buffer的基本使用
    查看>>
    NIO基于UDP协议的网络编程
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>